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The complete dynamic equations of Prandtl-Reuss Cl] are examined in the rectangular 

region. An exact solution is given for a problem which corresponds to some specially 
selected boundary conditions and initial conditions. 

The obtained solution is used to evaluate the correctness of some assumptions which 
are applicable in the approximate solution of these equations @I. 

1. The equations of Prandtl-Reuss are used for the description of dynamic processes 
in such different media as metals and soils. These equations have the form 

Si3Sij = T (p), dsij/dt + h,~ij =2Geij (1.1) 
where 

,Vij = - ‘ij L; Pbij3 _ Pij = Cij - '/3&[[6jj, h = (ZCeij,yij - I/zdT/dt)iT 

Here cij and sij are tensors of stresses and velocities of deformation, p = ‘/sOii is the 
pressure, G is the shear modulus, the operator dJdt is an absolute derivative in the sense 

of p]. (It is assumed that the summation is carried out over recurring indices i. 1, k = 
=l, 2, 3. Compressive stresses are taken as positive.) 

The first of equations (1.1) is the plasticity condition of Mises. The function T (p) 
which enters into this condition is taken in the form T = :! (kp + (I)~ where k and 0 are 

constants. The particular form of T (p) was selected by us on the basis of mathematical 
convenience. However, experimental data for the soil [4] give just this type of relation- 

ship. 
The remaining equations (1.1) express the condition of coaxiality of stress tensors and 

velocity tensors of plastic deformations. The value of i; is selected such that the condi- 

tion of plasticity is a consequence of these equations. In this connection it is assumed 

that ;, > 6. If it turns out that ?, <._ U, then (1.1) should be replaced by the conventional 
equations of elasticity. 

The system of equations (1.1) must be closed by means of some relationship between 
the pressure and the density. This relationship can be quite complex. For example, it 
can contain hysteresis loops. 

SO far not a single fairly general solution of equations (1.1) is known. In the solution 
of specific problems, therefore, these equations are usually simplified. For example, in 
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problems related to the propagation of explosion waves in soils it-is frequently possible 
to distinguish the front of the shock wave and the region of unloading. Then from (1.1) 
and the relationship between pressure and density it is sometimes possible to derive a 
simple equation of shock loading. In the region of unloading we can attempt to describe 

the medium as an ideal fluid or to assume that all quantities depend on one variable 

only (method of columns), etc. 
Such simplification is imperfect (in connection with this case) from a logical point 

of view, however, sometimes it allows to describe the phenomenon in an acceptable 
manner. 

Now a specially selected boundary value problem will be examined which allows to 
obtain the exact solution of equations (1.1) together with equations of motion. The 

same problem is solved approximately by the column method and for the ideal fluid. 
A comparison is made of solutions obtained. 

2, In the sy-plane let the medium occupy the rectangle I > y > 0, L > x > 0 

(Fig. 1). On the top side of the rectangle the 

normal stress is given, on the other sides the 
normal velocity. Tangential stresses at the 
boundary are equal to zero. The medium is 
incompressible and is under conditions of plane 
strain. The defining equations initially are taken 

Fig. 1 

ered to be positive. 

in the form (1.1). The density is assumed to be 
equal to one. Compressive stresses are consid- 

With these designations the equations of motion and the equations of continuity take 
the form du as, az dr da2 az 

-=-- 
dt dX -F’ dt =---65’ dY 

Z+$=o (2.1) 

d 
-= 
dt $+$+$- 

Here o1 = a,, a, = uUy and z = usy are stresses. u and u are velocities with respect to 
x and y. 

For an incompressible medium under conditions of plane strain it follows from (1.1) 

that P = ‘/z (cl f oz) then (1.1) can be written in the form 

G# + 4t2 = 4 (kp + b)2 

where h. is the same as in (1.1). Let the boundary condition on the top side of the rec- 

tangle be given in the form 
u2 = 40 0) + q,(t) z2 = Q 0, 5) (2.4) 

on the remaining sides u = 0 for x = 0, II = uo (t) for z = L and u = U for Y = 0. 

It is assumed also that qI (t) and u,, (t) are connected by the following relationship 

(1 + Iz) (Ldu, / dt + zig2 (t)) + 2L2(i - k) q1 (t) = 0 (2.5) 

Initial conditions are taken as 
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T = 0, 
l-k 2 

61 = l$-k cJ* - lfk bf u = I40 (0) + ) 
u=- 

12 - y2 
for t = 0 

These conditions contain only two arbitrary functions of time. The dependence on coor- 

dinates is fixed. 

Such a special selection of initial and boundary conditions is made because in this 

case the problem has a simple solution which is given by Eqs. (2.5). (2.6) if in these 

equations q. (O), q1 (0) and I(~ (0) are replaced by PO (t), q1 (t) and a0 (t). Equations (2.5). 
(2.6) are simply guessed. The fact that they give a solution of the problem is checked 

by straight substitution. 
In fact, since u does not depend on I/, and u on 2, while z = 0, the first of Eqs. (2.3) 

is satisfied. It is evident from the expression for ur that the second of Eqs. (2.3) is also 
fulfilled. Equation (2.2) is a corollary of (2.3). &rally, if (2.5), (2.6) are substituted 
into (2.1). then after some simple calculations we can become convinced that these 
equations are also satisfied. As far as the condition h > 0 is concerned, it acquires the 
following form, taking into account that-r = 0 : 

au 
J&c (al-Q) x + yji- dT <o (2.7) 

For this condition to be satisfied, it is sufficient to require. u. > 0, p > 0 (the material 

is compressed) and p;’ < 0 (unloading). 

It is easy to show that if the boundary conditions satisfy the inequalities qo (t) > b, 

41 (t) > 0, q; (t) < 0, qo’ (t) < 0 and u. (t) > 0, then the condition (2.7) is satisfied. 
From now on we consider these inequalities as satisfied. 

The quantity us’ which enters into (2.5). (2.6) corresponds to convective terms in the 

equation of motion’(2.1). Frequently these terms are completely discarded. The obtained 
equation allows to estimate the error which arises in connection with this. Since uof 
enters into the equation only in the combination uo2 -J= uo’L, the convective terms 
can be neglected if uo2 < u,‘L. 

If we set u (t) = wt and w = const, then this condition reduces to t 4 L / u, i. e. 
convective terms can be neglected as long as the displacement of the right boundary is 
small in comparison to the length of the rectangle. However, this assumption is made 
when the displacement of the boundary under the action of the load is not taken into 
account in the boundary conditions. 

Neglecting convective terms and making simple transformations, we write the expres- 

sion for u2 l-/i 

The structure of the solution is now completely clear. 

3. Let us solve the initial problem approximately by the method of columns and let 
us compare the obtained solution with the exact one, This method is applicable when 
I / L is small and it consists in neglecting the derivatives with respect to z in the equa- 

tions. As a result, a one-dimensional problem is obtained into which z enters as a para- 
meter. 

The quantities related to the approximate solution will be designated by the index 1. 
In the given case it follows from the continuity equation and boundary conditions for 
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y = 0 and z = 0 that u1 = v’ = 0. From the second equation&l) andboundary 
condition for y = I we obtain that a,’ = Q (t, z). It is evident from (2.8) that the error 

is maximum for y = 0. After simple transformations the expression for the relative 

error Au, assumes the following form (for y = Oj : 

02 - G21 
AI= G21 

l-k 1 

t ’ 

2 O(bL)--Q(L0) 
=Tjx- L, Q (tt 2) (3.1) 

From here the character of the error ls quite clear. It should only be noted that the case 

k 2 1 is impossible, because it ,follows from [5] that k < 1. 

In Fig. 2 the dependence of u, on x is shown for y = 0 . Curve 1 is for the exact and 
curve 2 is for the approximate solution. 

4. Let us examine the same problem assuming that the medium is an ideal fluid. 
Neglecting convective terms, we obtain instead of (2.1) 

au -g+g=o, -g++o, z++o 
Boundary conditions and initial conditions for velocities remain the same as before. As 

far as the initial conditions for stresses are concerned, they are not necessary at all because 
of the properties of an ideal fluid. Since in the initial conditions uv - u, = 0, the mo- 
tion is irrotational and it is possible to introduce the potential q, which satisfies the 

Laplace equation. The solution will be expressed in terms of cp according to the equa- 

tions P = --(pt, u = f?x, 1’ 7 ‘pu, Acp = 0 ‘(4.2) 

We note that the equations of the ideal fluid are obtained from the Prandtl-Reuss 
equations if the constants k and b which enter into the plasticity condition are set equal 

to zero. However, the problem examined in this 
62 section is not a special case of the previous one, 

b?q because ln the problem from Sect. 2 the parameter 
k enters not.only into the equations but also into 

LZ the boundary conditions as a result of the selection 

of relationship (2.5) for the connection between 

0 L 
a 0) and uo 0). 

The boundary value problem for the Laplace 
Fig. 2 equation in the rectangular region is readily solved 

by the Fourier method. In the given case it is expe- 

dient to separate the particular solution cp; which satisfies the boundary conditions every- 
where with the exception of the right side and also satisfies the initial conditions. For 

the remaining part of the solution $Z = cp - ‘pl a boundary value problem is obtained 
with boundary conditions homogeneous on three sides. This simplifies the matter. 

We select -pi ln the form 
t 

q1 = - i qo (s) ds + (9 + 1’ - Ya) (+p-iq,(s)ds) (4.3) 

It is not difficult to see that ‘pl satisfies the Laplace equations and boundary conditions 
everywhere except at x = L. For ‘pz the following boundary value problem is obtained : 
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92, = 0 for z == 0, fp2, ‘=- 0 for y = 0, ‘PZl = 0 for y := 1 
t 

4kL * 
Rx = m \ c/i (8) dS for 2 = L 

* (4.4) 
0 

The solution of this problem has the form 

where 
0 

rti x rnrT$ 

,\lr n mr 
cos 57 rnq, m = n +l/2 (4.5) 

n=o 

The function f (%, 11, r) which enters into (4.5) is determined for o < % .s f , 0 G q .c 1. 
For large ‘P the terms of the series which determines the function f have the order of 

exp U% - 1) T) . Consequently, the fnnction f differs significantly from zero only for 
r - 1. For L > I in this manner @ is concentrated near the right bo~da~. 

In Fig. 3 the function f (%, 0, r) is shown for 

r -1, 3, 10 (cnrves 1-3). If k = U (the yield 
limit is independent of pressure), men cpZ = 0 and 

cp = vl. In this case the solution assumes a parti- 
cularly simple form 

p = Q (t, 5) -+ yi ft) (I* - r,?, 

I: := -UOIJ j L (4.6) U = uox i L, 
1 

Fig. 3 
A comparison of (4.6) with (2.3) and (2.6) shows 

that lateral stresses differ by the quantity b. Other- 
wise the fields of stresses and velocities coincide, If k + 0, but t 2 1, we can set 
9 = 9% everywhere except for z - L. 

In analogy to Sect. 3, we write the expressions for relative errors of approximatlon of 
exact solutions by equations of the ideal fluid for L - z >> 2 

“k I2 
A~2=------ 

Q (f* L) - Q (‘, 0) 
1 -k k fsz Q (4 x) _i (Q (1, L) - Q (t, 0)) P/L2 for Y = 0 (4.7) 

It follows from (4.7) that the assumptions which were made, lead to an increase of velo- 
cities (which was apparent in advance) and stresses (curve 3 in Fig. 2). For small k the 

error has the order 0 (k). A comparison of (4.7) with (3, I) shows that for the given 
problem the method of ideal fluid gives a smaller error in modulns than the column 

method. 
In the general case it can be assumed that if k is small and the characteristic stresses 

are much greater than the yield limit, we can utilize equations of the ideal fluid. 
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The problem of determining small changes in the geometric parameters of elastic bodies 
is considered. It is assumed that the frequency spectrum of their natural vibrations should 

have given small changes. The method of the small parameter is applied, the problem 

is reduced to solving an &-moment problem. As an illustration, the problem of deter- 

mining the variable stiffness of an elastic beam as well as the problem of determining 

the meridian shape of shells of revolution by means of given frequencies of natural 
vibrations are considered. 

It should be mentioned that the most exhaustive results onsuch problems exist from 

the inverse Sturm-Liouville problem Cl. 2] as well as for-the inverse problem of quantum 

scattering theory p, 43. 

Only a few papers are devoted to inverse problems of elastic body vibrations. However, 

the problem of determining the density of an inhomogeneous string by means of its fre- 

quency spectra has been investigated with mathematical rigor 15-73. The problem of 
determining the stiffness of a beam by means of given natural vibrations frequencies has 
been considered in an elementary formulation in [8]. This problem has been examined 
for beams and plates in more detail in /_Q, lo], where a method is given for the construc- 

tion of the variable thickness for several given first natural vibrations frequencies and 

its numerical realization is demonstrated in examples. The present paper is a develop- 
ment of these others. 

1, Formulation of the problem, Let us consider the following inverse 
natural vibrations problem resulting from the first part of 1[7], under the assumption of 
smallness in the increments of the natural frequencies. 

Let there be the self-adjoint eigenvalue problem 

AU -mu=o, Giu = 0 (i = 1, . . . ( 24 (1-j) 
where 

AU = ~ (- i)i Iai (a, Z) .‘i’]‘i’ BU = ~ (- 1)’ [bi (a, 2) .‘i’]“‘, m < n (4.2) 
i=o i=o 


